Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death.

نویسندگان

  • Jibin Zhou
  • Zhili Shao
  • Risto Kerkela
  • Hidenori Ichijo
  • Anthony J Muslin
  • Celia Pombo
  • Thomas Force
چکیده

Oxidant stress is a ubiquitous stressor with negative impacts on multiple cell types. ASK1 is a central mediator of oxidant injury, but while mechanisms of its inhibition, such as sequestration by 14-3-3 proteins and thioredoxin, have been identified, mechanisms of activation have remained obscure and the signaling pathways regulating this are not clear. Here, we report that phosphorylation of 14-3-3zeta at serine 58 (S58) is dynamically regulated in the cell and that the phosphorylation status of S58 is a critical factor regulating oxidant stress-induced cell death. Phosphorylation of S58 releases ASK1 from 14-3-3zeta, and ASK1 then activates stress-activated protein kinases, leading to cell death. While several members of the mammalian sterile 20 (Mst) family of kinases can phosphorylate S58 when overexpressed, we identify Ste20/oxidant stress response kinase 1 (SOK-1), an Mst family member known to be activated by oxidant stress, as a central endogenous regulator of S58 phosphorylation and thereby of ASK1-mediated cell death. Our findings identify a novel pathway that regulates ASK1 activation and oxidant stress-induced cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta.

The bicistronic microRNA (miRNA) locus miR-144/451 is highly expressed during erythrocyte development, although its physiological roles are poorly understood. We show that miR-144/451 ablation in mice causes mild erythrocyte instability and increased susceptibility to damage after exposure to oxidant drugs. This phenotype is deeply conserved, as miR-451 depletion synergizes with oxidant stress ...

متن کامل

Klotho Regulates 14-3-3ζ Monomerization and Binding to the ASK1 Signaling Complex in Response to Oxidative Stress

The reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1) signaling complex is a key regulator of p38 MAPK activity, a major modulator of stress-associated with aging disorders. We recently reported that the ratio of free ASK1 to the complex-bound ASK1 is significantly decreased in Klotho-responsive manner and that Klotho-deficient tissues have elevated levels of f...

متن کامل

Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins.

Apoptosis signal-regulating kinase 1 (ASK1) is a pivotal component of a signaling pathway induced by many death stimuli, including tumor necrosis factor alpha, Fas, and the anticancer drugs cisplatin and paclitaxel. Here we report that ASK1 proapoptotic activity is antagonized by association with 14-3-3 proteins. We found that ASK1 specifically bound 14-3-3 proteins via a site involving Ser-967...

متن کامل

Klotho Protects Dopaminergic Neuron Oxidant-Induced Degeneration by Modulating ASK1 and p38 MAPK Signaling Pathways

Klotho transgenic mice exhibit resistance to oxidative stress as measured by their urinal levels of 8-hydroxy-2-deoxyguanosine, albeit this anti-oxidant defense mechanism has not been locally investigated in the brain. Here, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1)/p38 MAPK pathway regulates stress levels in the brain ...

متن کامل

ASK1 and Its Role in Neurodegenerative Diseases

The apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed serine/threonine protein kinase and one of more than 20 members that make up the triple MAP kinase (MAP3K) family of enzymes. Over the past decade, genetic studies have revealed that ASK1 plays a pivitol role in the cellular response to a wide variety of environmental and biological stressors including; reactive oxygen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 29 15  شماره 

صفحات  -

تاریخ انتشار 2009